extremal curvature - definitie. Wat is extremal curvature
DICLIB.COM
AI-gebaseerde taaltools
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is extremal curvature - definitie

POINT AT A DISTANCE FROM THE CURVE EQUAL TO THE RADIUS OF CURVATURE LYING ON THE NORMAL VECTOR
Center of Curvature; Centre of curvature
  • A concave mirror with light rays
  • Center of curvature

Ricci curvature         
2-TENSOR OBTAINED AS A CONTRACTION OF THE RIEMAN CURVATURE 4-TENSOR ON A RIEMANNIAN MANIFOLD (OR, MORE GENERALLY, A SMOOTH MANIFOLD EQUIPPED WITH AFFINE CONNECTION)
Ricci-curvature; Ricci curvature tensor; Ricci tensor; Trace-free Ricci tensor; Ricci form; Ricci Curvature
In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.
Radius of curvature         
RADIUS OF A CIRCLE WHICH BEST APPROXIMATES A CURVE IN A GIVEN POINT
Radius of curvature (applications); Radius of curvature (mathematics)
In differential geometry, the radius of curvature, , is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point.
Constant scalar curvature Kähler metric         
KÄHLER MANIFOLD WHOSE SCALAR CURVATURE IS CONSTANT
CscK manifold; CscK metric; CscK; Constant scalar curvature Kahler metric; Constant scalar curvature Kaehler metric; Constant scalar curvature Kähler manifold; Constant scalar curvature Kahler manifold; Extremal Kähler metric; Holomorphy potential
In differential geometry, a constant scalar curvature Kähler metric (cscK metric), is (as the name suggests) a Kähler metric on a complex manifold whose scalar curvature is constant. A special case is Kähler–Einstein metric, and a more general case is extremal Kähler metric.

Wikipedia

Center of curvature

In geometry, the center of curvature of a curve is found at a point that is at a distance from the curve equal to the radius of curvature lying on the normal vector. It is the point at infinity if the curvature is zero. The osculating circle to the curve is centered at the centre of curvature. Cauchy defined the center of curvature C as the intersection point of two infinitely close normal lines to the curve. The locus of centers of curvature for each point on the curve comprise the evolute of the curve. This term is generally used in physics regarding the study of lenses and mirrors (see radius of curvature (optics)).

It can also be defined as the spherical distance between the point at which all the rays falling on a lens or mirror either seems to converge to (in the case of convex lenses and concave mirrors) or diverge from (in the case of concave lenses or convex mirrors) and the lens/mirror itself.